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ABSTRACT

In secuon 1., britle and ductile isotropic damage mechanisms are studied from a
meso-mechanical viewpoint. Relationships between crack density and void volume
fraction defined at meso-scale on one hand, and a scalar internal vanable characterizing
damage on the other hand, are given.

In section 2., a general form for the evolution law for this damage variable is
derived. A threshold which defines the onset of this evolution is derived from
thermodvnamical considerations.

In section 3., it is proposed 1o relate the ultimate stage of continuum damage
evoludon, t.e. the local failure, to localization phenomena. The corresponding critena are

studied in details.

In Section 5, a post processor is fully described which allows the calculation of the
crack initiation conditions from the history of strain components taken as the output of a finite
clement calculation. It is based upon damage mechanics using coupled strain damage
constitutive cquations for linear isotropic elasticity, pertect plasticity and a unified kinetic law of
damage cvolution. The localization of damage allows this coupling to be considered only for
the damaging point for which the input strain history is taken from a classical structure
calculation in elasticity or clastoplasticity. The listing of the code, a "friendly” code, with less
than 600 FORTRAN instructions is given and some cxamples show its ability to model ductile
failure in one or multi dimension, brittle tailure, low and high cycle fatigue with the noalinear
accumulation, and, multiaxial fatigue.

In scction 6, application is performed on the Alpha-Two-Titanium Aluminide Alloy.With
a first serie of strain controlled fatigue test the locally coupled model is first identified and then
checked on a second serie of stress controlled tatigue tests. The good agreement allows 1o use

this locally coupled method to predict fatigue crack initiation on brittde or quasibritde materials.
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1. MICROMECHANICS OF DAMAGE




Micromechanics consists in deriving the behaviour of muterials at meso-scale from
the study of specific mechanisms at micro-scale. The micro-mechanisms must be
precisely defined from physical observations for both the geometries and the kinematics.
Their mechanical modelling is performed with elementary usual consttutive equations
established at meso- or macro-scale for strain, crack growth and fracture. When
compared to the direct analysis of the macroscopic properties, the additional power of this
approach comes from a better modelling of the possible interactions between different
mechanisms and from the homogenization that bridges the gap between micro- and meso-
scales.

When using classical continuum thermodynamics concepts, the effects at meso-
scale of material degradation at micro-scale are characterized by an internal variable called
damage. Hereaftcr, the effects of the material degradation are assumed to be isotropic at
meso-scale and the damage variable to be a scalar denoted by D. In this section,
definitions for this scalar variable are derived from the study of two ditfferent micro-
mechanisms.

1.1. Brittle isotropic damage

1.1.1. Microcracks and scalar damage vanable

The main mechantsm ot brittic damage is the nucleation, growth and coalescence
of microcracks up to the initiation at meso-scale of a crack. Hereafter, a relationship

between the micro-crack pattern and the damage variable D is established.

let us consider a Representative Volume Element at meso-scale as a cube of
dimension (I =1 = 1. This RVE s assumed to be constituted at microscale of cubic cells
of dimension (d = d = d) in which may he a microcrack of any area s, and any orientation

(see Figo 1), The number of cells is m=13/d? and the number of cracks n < m.

7/ 7
/ 7
me.\'(')sczile RVE
- d
1 — I\ — ,K d
A Mmicrocrack
=~ area s;
7
— /s

r..,g

Fig. 1. Micro- and meso-models for brittle damage
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he modelling consists 1y wrinng the balunce of the

The ceometny being defined, the
dissipated energy calculated by classicwt fracture mechanics one one hand. and calculated

by continuum damage mechanics on the other hand.

For a cracked cell i, subjected 10 a given state of stress, if G; denotes the strain

energy release rate corresponding 1o a crack of area sy, Dj the equivalent damage of the
cizase rate. the balance of dissipated energy can be

el and Y the strain energy density reie

ce
Written as
. . -~

Gisi=Y, D d?
For the n cracked cells of the meso-cube. the previous relation becomes :
n e M .- .
2; Gl = ‘\_ \'1 I)I d.“

1 1
Assuming that brittle growth of microcracks occurs at G = G = constant, corresponding

o Y = Y = constant, 1t can be written that

no. N .
GoN 5y =Y. d° Y Dy
l 1
soration of the previous

[SapSipays

burthermore, 101 s assumed that s, = O comesponds o Dy = O i

relation vields

r
(‘l\}_ N = \'k'
1

Diest homogcenizaton conshis i definim 2 the dumaze D atmacro-scale by
SUd D mero-celiss so that

omean value of the damagzes Dot all the
o o d*n
I)‘..\_.Dl; l”l :E.I)
[N I n 1 1 S
(y i
or D=0y 5
Yo N
e term S may be evaiiated from a rapture crienion defimmy the ntiation
n oy

Because of the bocabiration of the damage phenomenon, it can bhe
cocurs when ondy part of the tlat volume (1 = 1 = d

N PR ce -l
O 0 TTIUNY UTHUN.
s
}

assurned it e meso crack muaten

b micro-cracked, the other microeran s being neglected
the mesocrack mitates, 1e D o= D

[n other words it s assumed that the

at meso-scale,

when

._[/':3
2z
>

then,
. - 0

O




Hence,

Si

143

D¢
2k

D=

“a

n
In this case, the damage variable D appears as the micro-cracks surface density (S s; / 1-)
1

corrected by a factor (here Dg/k).

If the following simplest fracture criterion is considered

n

> s

1
12

n
T si=lf2k=1-Dc=1 then, D=
1

By the way, this calculation gives an order of magnitude of a characteristic length
which allows for the matching between fracture mechanics and damage mechanics namely

1, the size of the Representation Volume Element. Since,

D _ G _ D¢
n L
i |
1

v S
1=k De (S

Hence, for the simple fracture criterion k = 1, D = 1,

G
Y.

~

1=

For most metallic matenials

light allovs Steel and high alloys
0003 <G < 0.05 MPam
2, <Y< 10. MPa
0.0025 <1< 0.005 m

and for concrete in tension Ge = 3 10-3 Mpam, Y= 1.5. 10-4 MPa, so that 1= 2.10°1.
This shows that the size of the physical RVE must be of the order of the millimeter for

mictals and of the order of the decimeter for concrete.




1.1.2. Brittle damave ¢rowth

As a specitic example, let us denive the kinetic damage evolution law at meso-scale
which corresponds to the fatigue microcracks growth at micro-scale of Fig.1. For
simplicity sake, the analysis is rectricted to a two dimensional problem. for which e

denotes the uniform thickness of the whole RVE.

With D¢ =Kk, 1t has been established that :

n n L]
3 sy > s
1 - 1
D == and D=-—-
1- I~
and, for each cracked cell, 1f 2a denotes the crack length, the following relations hold :
172
. BYA . E YR . .
I\,:(EGl>1’“ Ki==%- G, b Gy $i=2e g

.
The surface growth rate s, of each crack can be expressed as a function of the swrain
energy release rate Gy of the corresponding cell, by means of the Paris’ faw of futizue
crack growth. I N denotes the number of cyvcles of loading in mode 1. and

Rt = Ky the ampinude of the stress intensity factor (with Kpyin = O, thes
A

AN

Oy

where Cand nare two matenial constants, with 1 = 4 for many metallic materials.

[Done assumes that this Pans” law corresponds to the integration over one cyele of ¢

A relationship between Gy and Y, can be found through their definition from the
chastic enerey. IDw denotes the elastue strain energy density and W the elastic strain

enerey of the elementary cell, then

AW,
s,

o wi

Gv = - an,

whereas Y, =—

A



Since
Wi=w;d%e,
G. .. 9lwidze) dD
v aD ds
If
~ 2 a c * L]
D= i—f T Gi=Yidi , Gi=Yid,
then
, UB
;= Ce EV2d"2 v v,

ence, the damage rate is
LS _nCEV gV
Di = 12 - 12

1.
2 Yl

n
Se¥Y
1
Assuming that all the n cracked cells have the same strain energy density release rate
Y. = Yp. the homogenized strain energy density release rate for the meso-RVE is :

Y=nY, and '; =n Y.'n

Consequently
n T

. ~ E'V- n/z . g»l .
ISR G
0.

12n°

[n this example. the damage rate is an increasing functon of the strain energy density
relzase rate ; for most materials since 1 = 4. the damage rate is quasi-proportional to the

-
strain energy density release rate. The damage rate is also proportional to the rate Y.

This will be used in section 2.1 as a guideline to derive a general kinetic law for damage,

evoinnon




1.2. Ductile isotropic damage

1.2.1. Microcavities and scalar damage variable

The main mechanism of ductile damage is the nucleation, the growth and the
coalescence of microcavities by large local plastic deformatons. Hereafter, a relationship

between the density of micro voids and the damage variable D is established.

Let us consider again a Representative Volume Element at meso-scale as a cube of
dimension (1 * 1 * 1), This RVE is assumed to be constituted at microscale of cubic cells
of dimension (d * d * d) in which may lie a void of volume d3 (Fig.2.).

7/ 7/
/ Ve

M7 V//////A/ﬁér\d
[ void
7

Fig. 2. Micro-meso element for ductile damage

On this very simple geometry, the modelling consists in writing the balance of the
dissipated energy calculated from the growth of the cavities on one hand, and calculated

by continuum damage mechanics on the other hand.

For the geometrical model under consideration, the porosity P can be defined as :
nd>
p = —_ *E)v = 13 -

Po

where p and pgare the current and initial porosity respectively, and n the number of

cavities.

According to Gurson's model, the porosity P at meso-scale is equal to the
hydrostatic part E}p{ = Efk of the plastic strain due to the growth of voids.
Here, this assumption leads to the following equality written at meso-scale :
14 _ L] p
P=g,
10




At meso-scale, given an homogenized stress ajj and a plastic strain rate ES. the total
power dissipated 1s
o °p

T

This can be split in two parts by means of the deviatoric and hydrostatic quantites i.e.
D *pD  °p
(D = BN
< (0;; +0y Sij) (sij + g dij)
D +pD .
=0 &y ot 3oy eg+ O
The first term is the power dissipated in pure plasticity by slips. The second term which
corresponds to the irreversible change of volume may be interpreted as the power
dissipated in the RVE to increase the material discontinuities by growth of the cavities.
This latter part must balance the daimage dissipation i.e. :
4 Pz 313
doy ey P =YDI
so that

s 3¢C .
_ H
D= v P

Ps

3o
Assuming for simplicity, proportional loading, perfect plasticity,- YH = const, and the

initial condition P = 0 — D =0, the integration yields :
% &
Y 13

As for brittle damage, because of the localization of the damage phenomenon, it can be
assumed that the meso-crack initiation occurs when a set of cavities occupies only part of
the flat volume (1 = 1 = d), the other cavities in the RVE being neglected.

In other words, the critical value of the porosity corresponding to D = [ 1s assumed as

d? 124 d
Pemnz=k7g =kj
) . 3 Oy . .
This allows for the calculaton of the term v in the damage equation :
jo
_y.2°H d
D=1= v k i
tHence,
n d-
D=
k 12




2.2, Ducule damage erowth

As a specinic example, let us derive the kinetic damage evolution law at meso-scale
which corresponds to the voids growth at micro-scale. For simplicity sake, the analysis
is restricted to the parncular case k = 1.

The kinetic law for damage evolution can be directly derived from the expression
for D established in the previous section, so that

. .
I.) = g.,: l’.l + 2n g‘f‘l
I- 1~
The first term accounts for the increase of the number of cavities and n denotes the
number of cavities nucleated per second. The second term accounts for the cavity
growth. In the Gurson model. the porosity rate is also the sum of two terms accounting

for nucleation and crowth.

a) Damace growth by nucleution of cavities

To model nucleation, Tvergaard proposed the following kinetic faw for porosity
. . .
P=Ac ~+~ B Gy
g
where A and B are matenial parameters.
Assununz for simplicity sake a sudden nucleaton of cavities of a fixed size d

. od_:
P=n %
1,
and
D-P L =lwas ~Bay
=P TGy S
sO that.
1 K
L

Damage can be expressed as a function of the accumulated plastic strain rate p wrnitten in

terms of the plastic tangent modulus ET. Assuming proportional loading, i.e.

OH SH
Oy Cuy
. 2 ep s )
3 Ty Ty Ev

<o that,




b) Damage growth by enlargement of a fixed number n of cavities.

The problem of void growth has received much attentior in the nast 20 years.
Essential results are the McClintock and Rice & Tracey analyses which derive the rate of
growth of a cylindrical or spherical cavity of volume V in a perfectly plastic infinite body

as a function of the accumulated plastic strain rate p and triaxiality ratio Op/Geq , i.€.

V=085V ;.) exp(% ‘EB‘)

eq
Taking
V=d3
leads to
5 o]
3d2d=085 d3 p exp(3 —)
Ceq
Since
. dd 42 - d
D=2n 12 ,D=nT2—,D=2Da

¢) Conclusions

In this example, the damage rate by nucleation and growth of voids appears as
- proportional to the accumulated plastic strain rate,
. . . TR . OH
- an increasing function of the tnaxiality ratio —,
Oeq
- through E1 or D, a function of the current state of the material.

This will be used in section 2.1 as a guideline to derive a general kinetic law for damage

evolution.

13
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2. GENERAL PROPERTIES AND FORMULATION
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2.1. A general form for continuum damage evolution law
a) General formalism

Within the framework of classical continuum thermodynamics, the thermo-
mechanical state of a material is described by the following set of independent state
variables :

V=(T,V) with  V =(D, P, VP,

where £, £P denote the total and plastic strain tensors respectively, T the temperature, V

the set of the internal variables, and D the damage variable. For simplicity sake, hereafter
only 1sothermal situatons will be considered.

The reversible behaviour is described by the Helmholtz specitic free encrav
Y =Yz, V),

chosen as
¥ =¥z -zP D)+ PP, VP

with

Ye=5 z-F):(1-D)Z;: (-

12—

where Zq denotes the elasticity matrix of the undamaged material. The thermodynamic

forces
b=z, A)
are defined from the following state laws :
¥ Jv
c=p—, A=(-Y, -, AP)=p—,
Jz av

where p denotes the mass density, < the stress tensor, and Y the strain energy density
release rate or damage energy release rate.

The irreversible behaviour is described by a dissipation potential

D=P(z, A7),
from: which the following evolution laws are derived :
* oD N o
EP = V =— Q__
Jz JA

In particular, the damage evolution law can be chosen such that

9Fp

D=1 %y




b) damage vs (micro-)plasticity

In section 1., it has been established that damage 15 always related 1o some
irreversible strain 2ither at micro- or meso-level. This property can be taken into account
in the evolution law for the damage variable by assuming that the factor A is proportional

to the accumulated plasdce strain so that

. aF .
D=%LD p
Y
The irreversible nature of damage is directly taken into account by the fact that the vanable

p is always positive or null,

In most materials, a certzin amount of plasticity must be accumulated before
durmaze ar meso-level appears. In metals, this corresponds to the accumulaton of micro-
stresses in the vicinity of imtial defects, of dislocations, ..., prior to the nucleation of
micro-cracks or mucro-voids. To model this phenomenon, since the damage evolution is
eovermed by the accumulated plasie strain rate, 1t is natural to introduce a threshold pp on

the varlable p. such that

D= r‘dF\;D ;.w i p2pp

D=0 if p<pp
Or _

D - 9(%1.? 2 Hip - pp)

where Hiy 1s the Heavyside step function.
H R - . IR 163 Tavt . . S p . .
In monotonic loading. pp can be identified as the uniaxial damage threshold €. whereas

for fatigue or creep processes pp 1s a function of the applied stress, as it will be discussed
In section 2.2

¢) driving force for damage

From the thermodynamical analysis, it has been deduced that the driving force for

damage is the strain energy density release rate Y. Hence, Fp must be a function of Y :

Fp = Fp (Y, ..)

16




d) influence of the rriaxiality ratio {

Another important feature of fracture mechanisms is the influence of the triaxiality
ratio (OH/Ceq), where it is recalled that oy denotes the hydrostatic stress and Geq the Von
Mises' equivalent stess. This effect is directly taken into account through the damage
energy release rate Y which is a functon of the triaxiality factor Ry :

Y < Oeg~ Rv :
2E (1 -D)-

with

[PSTR I

Ry=2 (1+v) + 3(1—2v)(6—&)

Oeq
e) a general form

In order to choose the proper and simplest expression for Fp, let us recall the

kinetic damage laws obtained by micromechanics for particular mechanisms in section 1. :

Britle damage by fatigue growth of micro-cracks : D= Y

1 being of the order of 4
D=(const)*Y Y
Although no plasticity has been introduced in the analysis, it always exists at
micro-scale at the crack tips of the micro-cracks and it is possible, at least formally

to relate Y to p through a plasticity constitutive equation :

Y= Y(ch) - \?((.jcq)

and
Ocq (P) = Ocy(p)
. . , R .. hd 1 CH .
Ductile damage by nucleation of micro-cavities : D= d ET|A+B —|p
Ocq

: . . . . 3 OH

Ductite damage by enlargement of micro-cavities : D=0.57 D pexp 5

Ocq

17




The qualitative conclusion which can be drawn from these three results 1s that the

damage rate D can be considered as proportional to Y, which is a function of (6p/Geg).

and p :

D~Yp
or

Fp~Y-

As in any realistic constitutive equation, a material dependent scale factor, such as
1 - . . .
(const), ET.or 0.57, must be introduced. Let us denote by S this material constant so

that

(]

y

FD~“S—

Finally, according to the qualitative properties listed above, the damage potential is

naturally written as

-
tJ

FpiY:ipDn = Hip - pp)

12

2]

where the factor 2 has been introduced to compensate for the factor (1/2) coming from the
derivation. Hence. the proposed general continuum damage evolution law is the

following :

D=

|

- 5 Hip - py)

w

where two material dependent parameters are introduced, viz. S and p, which characterize
the energetic resistance against the damage process and the damage threshold,
respectively. The effects of the temperature T are taken into account through the variation
of these coefficients with T and through the accumulated plastic strain rate fw which is also

a funcuonof T.

Several important properties, though not directly introduced in the formulation,
are also naturally exhibited by this general evolution law, ie. :

- the non linear accumulation of damage,

- the effect of mean stress in fatigue,

- the non hinear interaction of different kinds of damage.

18
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2.2. Damage threshold

Under monotonic loading, the damage threshold pp can be identified with the
uniaxial damage threshold €, whereas in the case of fatigue or creep loadings it is a
function of the applied stress. It corresponds to the critical level of plasticity which
induces the nucleation of microcracks without any consequence on the mechanical

properties and can be related to the energy stored in the matenal.

Experiments in fatigue have shown that the total plastic strain energy dissipated
may reach tremendous values before failure although the stored energy remains constant
at microcrack initiation. This stored energy is the result of microstress concentrations
which develop in the neighbouring of dislocation networks in metals and of

inhomogeneities in other materials. For a unit volume, it is equal to the difference
t .

between the total plasuc strain energy ( | Gij sﬂ dt )} and the energy dissipated in heat as
0

given by the Clausius-Duhem inequality of the second principle of thermodynamics.

For instance, in the case of a material exhibiting kinematic X and isotropic R
strain hardenings and no damage, under an isothermal transformation the rate of energy
dissipated in heatis :

.p L] -

O=0j &, - Rp - Xjja4;20

This expression may be calculated from :

- the potential of dissipation e.g.

_ 3 .
F = (‘JD——v.{)Cq - R -0y - X Xij Xij
- its associated normality flow rule
sp_OF s+ OFs s . OF s
e = . = = A, O =—w5o— A
K Joj; P IR ! dXjj

- and the yield crterion
so that

3 SN
0=(0y + ',z—ﬂ X.))\U)p

Hence, the stored energy W as a function of time t1s :

4 . t ‘2. .
W(t) = j Oy Ef’j dt — | (oy + 2—7.: XiniJ‘)p dt
0 0

19




This formula can be simplified if the following assumputions are made :
- the eftect of the kinematc hardening is neglecied :
p
0

- the vaniauon of Geq is neglected as for a quasi perfectly plastic matenal

Ws=[Sup (oeq) ~ oy p

If this stored energy is considered as a constant for the damage threshold pp, its
value can be identified in the one-dimensional monotonic case used as a reference with
pPpD= EpD

In the particular case considered above. and with the crude approximations made,
the onset for the damage process, or damage threshold, corresponds in the case of a
monotonic loading to the ulnimate soess Oy :

so that

Gu - 0\,‘
PD = g[‘r
Y SUP(GC(I) - G\'

As a summary, in the particular case considered in this section, the whele set of

equations that govemns the dumage evolution 1s :

Y o Gy = Oy
d=g p Hip—¢py T )
5 P P D Sup(Geg) — Oy

20)




3. LOCAL FAILURE CRITERIA
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The ultimate stage of continuum damage evolution corresponds :0 meso-crack
imuanon. As a first approximation, this critical damage state can be characterized by a
critical value De of the damag~ - iriable, for instance D¢ = 1.

In fact, the value of D¢ is not solely material dependent. As discussed below, it
also depends on the local stress state .

It is proposed to relate the conditions for the meso-crack initiation to the
conditions for the localization of the deformation in the material. In this section, these
latter conditions are studied in details, inside, at the boundaries or at the interfaces of rate-
independent solids for both the linear and the non-linear case. Physical interyretations of
these conditions are also given.

3.1. Introduction

Since the pioneering works of Hadamard, Hill, Mandel and Rice, the localization
of the deformation in rate-independent materials is treated as the bifurcaton of the rate

probiem.

Here, we give a general view of the various bifurcation and localization
phenomena for possibly heterogeneous solids made of rate-independent materials. Under
the small stain assumption, the behaviour of these matenals is described by the following

picce-wise Linear rate constitutive laws :

t
|
{1]

when f <0, or f=0and5:Z:8(v) <0

L

=_:2(v) with

(3o

(hH

- - -

L =X when f=0and>: =

{1
(4]
—
<
-
\2
<

. .

where = and 2(v) = 2 respectively denote the stress and strain rates, v the velocity, and f
the vield funcuon.
The general class of materials modelled by relations (1) includes for instance the

elasto-plastic damageable solids the behaviour of which is described by the constitutive
equations discussed in section 2.1.a.




It is shown that, in general, different types of localization phenomend may occur,
depending on the failure of one of the three conditions which are described in section 3.2,

Their physical interpretatuon is the following :

- the ellipticity condition s very classical. Its failure is the condition for
localization given by Rice and linked to the appearance of deformation modes involving
discontinuities of the velocity gradient. It has also been related to stationary acceleration
waves ;

- the boundary complementing condition governs instabilities at the boundary of
the solid. Its failure leads to deformation mode  localized at the boundary and is related
to stationary surface waves (for i~stance Rayleigh waves) ;

- the interfacial complementing condition governs instabilities at interfaces. Its
failure leads to deformation modes localized at each side of the interface and is related 0

stationary interfacial waves (Stonely waves).

3.2. Rate problem analysis : the linear case

Let us consider for instance the body sketched in Fig. 2.

interfacial mode

surfaces
reaching 1

singular surface
reaching S

singular surface
crossing |

singular surface
inside

Fig. 3. Different types of localization modes
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Quahitative results can be exhibited from the analysis of the rate problem for the
so-called linear comparison solid (see Hill). In this case, this linear problem is well-

posed if and only if the following conditions are met :

- the ellipticiry condition : the rate equilibrium equations must be elliptic in the
closure of the body Q, i.e.

det(n .= .n)#0 forany vectorn # 0, and any point M € Q.

- the boundary complementing condition : this relation between the coefficients of
the field and boundary operators must be satisfied at every point P belonging to the
boundary I' where the boundary conditions are formally written as E(v) = g. This
condition is easily phrased in terms of an associated problem on a half space defined by
z > 0. It requires for every vector k = (ky, k2, 0) = 0, that the only solution to the rate
equilibrium equations with constant coefficients (equal to those of the operator at point
P). in the form

v(x, v, 2y = w(z) expli (k] x + k2 y)]

with bounded w and satisfving the homogeneous boundary conditions Z(v) = 0, is the

identically zero solution v = 0.

- the interfacial complementing condition : this relation between the coefficients of
the field operators in €2} and Q7 must be satisfied at every point Q of the interface 1
between Q) and Q2. This condition is again easily phrased in terms of an associated
problem on the whole space divided by the plane interface z = 0. It requires for every
vector k = (ky, k2, 0) # 0, that the only solution to the rate equilibrium equations with
constant coefficients (equal to those of the operators at point Q, in Q1 for z < 0 and in Q-

for z > 0), in the form

(vi(x,v,2), vaUx,y, z)) = (w1(2), wa(z)) expli (k] x + ko y)]

with bounded (wj,w2) and satisfying the continuity requirements (continuity of the
velocity and the traction rates) across the interface z = 0, is the identically zero solution
(vilz), vo{z)) =(0, 0) ; (where vy and v2 are the solutions, respectively for z <0 and for
z>0).

When these three conditions are fulfilled, the rate boundary problem admits a
finite number of linearly independent solutions, which depend continuously on the data,
and which constitute diffuse modes of deformation.
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Remarks :

- these three conditions are local, and this is particulally important when
considering their numerical implementation ;

- the above-given results remain valid for an arbitrary number of non-intersecting
interfaces, an interfacial condition being written for each interface ;

- the failure of these conditions can be interpreted as localization criteria as recalled
in section 2.1. These localization criteria can also be used as indicators of the local failure
of the matenial ;

- both boundary and interfacial complementing conditions fail in the elliptic regime
of the equilibrium equations, or at the latest, when the ellipticity condition fails. Thus,
localized modes of deformation at the boundary or at the interface generally occur before
the onset of so-called shear banding modes.

3.3. The non-linear case : some results

Although the complete analysis of the non-linear problem is not yet available,
some rtesults can be given for the possibility of emergence of deformation modes

involving jumps of the velocity gradient for the bi-linear rate constitutive laws (1).

The necessary and sufficient conditions for the onset of such modes inside the
body have been given by Borré & Maier who extended the results given by Rice, and
Rudnicki & Rice for so-called continuous and discontinuous localizations. We have
amplified these results by seeking necessary and sufficient conditions for which a
discontinuity surface for the velocity gradient appears at, or reaches the boundary of the

solid. These conditions are given below for the constitutive laws (1) with
= (2:2)® (5: %)

- h
where it is assumed that h > 0, and = is strictly positive definite.

At a point P of the boundary I" where only surface traction rates F are applied, the
necessary and sufficient conditions for continuous localization {i.e. the material is in

loading (L. = H) on each side of the singular surface] are

1) there exists £ suchthatm H:g5=F
20) i1 det(n . HE . n)=0

i) m.E.n).n.E.n)'.n.E:2)=

3
{1
[




4. A CRACK INITIATION POST PROCESSOR
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4.1. Introduction
The constitutive equations for elasto-plasticity and damage at microscale developed
during the first vear of the grant (see the tirst annual report, LEMAITRE-BILLARDON,
Mai 19901 were used to write a post processor allowing the determination of crack initiation

even when the damage is highly localized as in high cycle fatigue.

4.2. Locally Coupled Analysis of Damage in Structures

In most applications, the damage is very localized in such a way that the damaged
material occupies a volume small in comparison to the macro-scale of the structural
component and even to the mesoscale of the RVE. This is due to the high sensitivity of
damage to stress concentrations at the macroscale and to defects at the microscale. This
allows us to consider that the effect of the damage on the state of stress and strain occurs
only in very small damaged regions. In other words, the coupling between damage and
strains may be neglected everywhere in the structure except in the RVE(s) where the
damage develops. This is the principle of the locally coupled analysis [Lienard, 1939,
Lemaitre, 1990] where the procedure may be split into the following two steps as shown in
Figure 4.

. A classical structure calculation in elasticity or elastoplasticity by the Finite
Element Method (FEM) or any other method to obtain the fields of strain and stress.

. A local analysis at the critical point(s) only dealing with the elasto-plastic
constitutive equations coupled with the kinetc law of damage evolution, that is a set of
differential equations.

This method is much more simple and saves a lot of computer time in comparison to
the fully coupled analysis which takes into account the coupling between damage and strain
in the whole structure. The fully coupled method must be used when the damage is not

localized but diffused 1n a large region as in some areas of ductile and creep failures
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(BENALLAL, 1989]

| POST PROCESSOR
Elasio (plasuc) . Elaswoplasticity coupled
Consuttive Mayeria} 10 damage constiative
Equations equapons
r e~
"3 CRA
! Stress and o cRmiCAL Y mm%(‘lm
Strain Fields POINT,/
A N, CONDITIONS
Damage mechanics
Continuum mechanics Dafferential equations
FEM Cakulagons

Fig. 4 Locally coupled analysis of crack initiation. .

The locally coupled analysis is most suitable for those cases of brittle or fangue
failures when the structure remains elastic everywhere except in the critical point(s).

If the damage localizes, this is of course because stress concentrations may occur but
also, because some weakness in strength always exists at the microscale. Let us cansider a
micro-mechanics model of a RVE at mesoscale made of a matrix containing a micro-
element weaker by its yield stress, all other material characteristics being the same in the
inclusion and in the matr'x (Figure §).

. The behavior of the matrix is elastic or elasto-plastic with the following
characteristics of the material: yield stress Gy, ultimate stress 6, and fatigue limit of

(of < oy).
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Fig. 5 Two scale Representative Volume Element

.

The behavior of the irclusion is elastic-perfectly plastic and can suffer damage.

Its weakness is due to a plastic threshold which is taken to be lower than 6y and equal to

the fadgue limit G5 if not known by another consideration
H B
Cg 2 0)’ = Of¢

Below the fatigue limit 6y no damage should occur. The fatigue limit of the inclusion is

supposed to be reduced in the same proportion:

c
of = op—L

Oy

The second assumption which makes the calculation simple is the Lin-Taylor's strain
compatibility hypothesis [Taylor, 1938] which states that the state of strain at micro-scale is

equal to the state of strain imposed at macroscale.

Then, there is no boundary value problem to be considered. Only the set of coupled

constitutive equatons must be solved for the given history of the mesostrains at the critical
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point(s).

The determination of this critical point is the bridge between the F.E.M. calculation
and the post processor. If the loading is proportional, that is constant principal directions
of the stresses, this is the point M* where at any time the damage equivalent smess is

Y

maximum
0'*()‘4-) = Max(o *(M)) > M*

If the loading is non-proportional, the damage equivalent stress may vary differently at
different points as functons of the time like parameter defining the history. A small c* for
a long time may be more damaging than a hrge o* for a short time! There is no rigorous
way to select the criical point(s) but an "intelligent” look at the evolution of ¢* as function
of the space and the ime may restrict the number of the dangerous areas to a few points at
which the calculation may be performed.

Another point of interest is the mesocrack initiation criterion. The result of the
calculation is a crack initiation at micro-scale ihat is a crack of the size of the inclusion; its
arca is 8A =d~. This corresponds to a value of the strain energy release rate at mesoscale

G that may be calculated from the variadon of the strain energy W at constant stress

1 6W

T 28A

oW . . . . . .
But ey is also the energy dissipated in the inclusion by the damaging process at constant

Stress

D.
43§ YdD

Gisay=—>
A 5A

Assuming a constant strain energy density release rate Y = Y. yields
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G(SA) =Y:.Dcd

Another interesting relation comes from the matching between damage mechanics and
fracture mechanics. Writing the equality between the energy dissipated by damage at

micro-crack initiation and the energy dissipated to create the same crack through a brittle

fracture mechanics process:

Y. D¢ a3 = G d? , where G is the toughness of the material. It yields
Y.D.d =G,

Comparing the two relations for Y D d shows that
G8A) = G¢ — the inswability of the meso RVE

Then, the criterion of micro-crack initiation is also the criterion for a brittle crack instability

at mesoscale.

4.3. Constitutive Eguations
4.3.1. Formulation

The following hypotheses are made:

. small deformation
uncoupled partitioning of the total strain in elastic strain and plasuc strain
gj=¢ey+ed

1)

. linear isotropic elasticity
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perfect plasticity. The latter hypothesis is justfied by the fact that in most cases

damage develops when the accumulated plastic stain is large enough to consider the strain

PRI - TSl

hardening as saturated. Nevertheless, the code described in section 4.3 allows one to
consider stepwise perfect plasticity in order to take into consideration high values of strain
hardening and the cyclic stress strain curve for mulnlevel fatigue processes.

The threshold of plasticity oy is bounded by the fatgue limit and the ultimate stress
of <G < Oy

The plastic constitutive equations are derived in the most classical way from the yield
funcdon in which the kinetic coupling with damage obeys to the strain equivalence principle
applied on the plastic yield function:

Geq

f=8eq—0s=0 withGeq=—v

The plastic strain rate derives from f through the normality rule of standard materials

[Lemaitre and Chaboche, 1990].

D .
. (oF f=0
g}?:-ai)\-_é_ii if{

aﬁij 20qu—D f=0

where X is the plastic multiplier. This shows that

A (2.0 . .
B (-3— e}} eg) = p, where p is the accumulated plastic strain.

The kinetic law of damage evolution, valid for any kind of ductile, brintle, low or high
cycle fatngue damage derives from the potential of dissipation F in the framework of the

State Kinetic Coupling theory [Marquis and Lemaitre, 1989]
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2
f+———-—-—Y2 Y = GEqRV = GSZRV
25(1- D) 2E(1-D)” 2E

S is a damage strength, a constant characteristic of each material

. 9F. Y A ¢
D=d=X 2 op=Yh i pa
oy ~si1-p ' PTghk t P=PD

mesocrack initdation if D = D¢ as demonstrated in section 2.

. pp 1s a damage threshold corresponding to microcrack nucleation, it is related to

the energy stored in the material. Consider the material of the inclusion having a plastic

. ) . of . " . : "

threshold saess o and a fatigue limir 0? = =L considered as the physical yield smess
o}

y

(Figure 6).

1\CT“
O-; A .
] /,f'///////////ﬁ'orzd energy
CrqpFr-r—=—-—- T TS
Heal
T ya

Fig. 6. Modelling a stress-strain curve.

The second principle of thermodynamics states that in the absence of any damage, the

13




energy dissipated in heat is ot p. Then the stored energy density is
ay fp <P, J

D= P K
W = IGleEU—Ofp

From the perfectly plastc constitutive equation
, K
Ws = (Gs = Of )P

Censidering that the threshold pp is governed by a critical value of this energy idenufied
from the unidimensional reference tension test having a damage threshold €pp, a plastic

reshold equal to the ultimate stress oy and a fangue limit of

(65— ot )pp = (0, ~ Op)EPD

\

. GY
with chL =—
G~ Op G

Gy, ~G¢

and PD = €PD

s

If piecewise perfect plasticity of several thresholds G; is considered

wy = Zog(p, - PH) - O?P

and pp is defined by

Pp "
Zoosi(Pi -Pi1) - O¢pp = (0, ~Op)Epp
p:

The critical value of damage at mesocrack initiation D¢ corresponds to an instability
[Billardon and Doghri, 1989]. Nevertheless, it can be related to a certain amount of energy

dissipated in the damaging process

34

E SN




<

D
| YdD = constant at failure
0

Assuming for that calculation a proportonal loading for which Ry, = const

[e)
2E 2E ¢

(7]

t

=’
<@ ‘-—‘()

D
YdD = |
0

Taking again the pure tension test as a reference which gives the critical value of the
dumage at mesocrack initiation Dy related to the suess to rupture oR and the tensile

decohesive ulumate stress oy, together with Ry, = 1 gives the rupture criterion:
u Yo A% &

GIR,

Collecting all the equations gives the set of constitutive equations to be solved by a

o

numernical analysis

£

-t p
J_51J+Ex'

)

e_l“}’V Olj A% Gkk
€)= —E o0y
E I-D EI1-D

0 - 1ff <0
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,
o2 .
?_ESS Ryp if p2pp
- O
D= PD =E€Pp—" 0{
g, ——+
0 - ifp<pp Oy

2
Gy

2 =l
S

v

Mesocrack inidation if D = Dy,

As the plastc strain rate €7, is governed by p, and p related to the damage rate D, in

1
this model it is the damage which governs the plastic strain.

Note also that the perfect plasticity hypothesis allows one to write Ry, ¢nly as a

furcton of the total strain, since

E(1-D) 1
GH:%-—"—V—)-E%Y E%{ZEH as E}I?—g(&ik-‘r E%\) and Eik:

ch:o's(l 'D)

G E g
then ZH o= CH
Ceq 1-2v Gy

4.3.2. Identification of the Maierial Parameters

In order to be able to perform numerical calculations, it is an important task to

determine the material coefficients in each case of application. This is always difficult

because one is never sure that the handbook or the test results used comrespond exactly to

the matenal considered in the application. Those coefficients are
E and v for elastcity

of, Oy, Oy and the choice of o for plasticity

S, €pp. Dy for damage
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They can be easily obtained from a tensile swess strain curve with unloadings or from
a very low fatigue test at constant strain amplitude (NR < 10) as those of Figure 7.

A classical expenmental procedure with strains measured by strain gauges permits the
determination of the Young's modulus E, the Poisson's ratio v and also the damaged

elasticity modulus E as defined on the graphs of Fig. 4 and as a function of p

AUn

Tensile stress-strain curve Very low cycle fangue test (AE(GU))

Fig. 7. Identification of elasto-plastic and damage parameters.

1l

p = €p on the first graph

il

20'1\1 2C

P E(I—D):

U = const

2N AEP on the second graph since Ag, =

N is the number of cycles

The yield stress Gy and the ulimate stress 6 are also of a classical procedure. The fatigue
limit Of is the stress for which the number of cycles to failure Ng in a high cycle fatigue

testis very large: Ng = 10% 10 107 cycles. Usually




The damaged parameters are deduced from the measurement of E as the law of elastici
allows to write [Lemaiwe and Dufailly, 1987]

Then, the damage D is plotted versus the accumulated plastic strain p as in Figure 8 from
which it is easy to deduce:

the damage threshold epD, defined by ep <epD — D =0
2
s 0
*  the damage strength Sas S = Os O
- 2E 8D
since in one dimension Ry =1 and D=—3

the critcal value of the damage D defined by D = Max(D).
AD

Dic

O

‘C—Pa

P
Figure 8. Identification of damaged parameters
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The plastic yield threshold o is a matter of choice regarding the type of accuracy

needed 1n the calculaton.

*  take o= oy for the highest bound on the tme-like loading parameter to crack

inigaton.
*  take o3= 0o, for the lowest bound on the time-like loading parameter to crack

lnitdaton.

4.4. Numencal Procedure
4.4.1. Method of Integration
The method used is a strain driven algorithm: ateach "ume” (or ime-like parameter)
increment, and for a given total strain increment, one knows the values of the stresses and
the other material model variables at the beginning of the increment (t,) and they have to be
updated at the end of the increment (t;4+1). We show here that the general numerical
procedure [Benallal, Billardon, Doghri, 1988] becomes particularly simple and efficient
because analytically derived in a closed form.
In the following, the subscript (n+1) will be omittzd and all the vaniables which do
not contain the subscript (n+1) are computed at tn+‘], Tensorial notations will be used for

convenience.

We first assume that the increment is entirely elastic. So, we have
5 = _¢P
G =Atre 1+2u(e—g;)

where A and pt are the Lamé coefficients

Ev E
X:———— u:
(1-2v)(1+ V) 2(1+v)

and 1 is the second order identity tensor.

All the other "plastic” variables are equal jo their values at t,. If this "elastic
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predictor” sausfies the yield condition f < O, then the assumption is valid and the
computation for this time increment ends. If f > 0, this elastic state is "corrected” as
explained in the following in order to find the plastic solution.

The rate relations of Section 3 are discretized in an incremental form corresponding to
a fully implicit integration scheme which presents the advantage of unconditional stability

[Ortiz and Popov, 1985]. Then the solution at t, 4 has to satisfy the following relations:

f=0eq—0s=0

G =Awel+2u(e—el — AeP)

AeP =NAp
AD = XAp
s
=D
where A(®)=(®)qy—(*), and N= 3-?_
2 Ceq

If we replace AeP by its expression in the second equation, we see that the problem is
reduced to the first 2 equations for the 2 unknowns: G and p.

Let's find G and p which satisfy:

h=6-Atrel-2u(e—eP)+2uNAp =0

This nonlinear system is solved iteratively by a Newton method. For each iteration (s) we

have

of

f+—:C5z=0

HEE R
oh oh

h+ —Cz+—C,=0
o ¢ op P
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where f, h and their partial derivatives are taken at t; 41 and at the iteragon (s). The

"correctons” Cg and Cp are defined by
C& = (6)s+l - (6)5 and Cp = (p)s+1 - (P)s

The starting iteration (s=0) corresponds to the elastc predictor.

The set of equadons for f and h may be rewrnitien as
f+ NIC& =0
oN .
where IT is the fourth order idendty tensor and

N 3 .
9 :Tl._[%(n—%léal)—r\'@m}

% oul2
. a3 . ON . . .
Since N:N = > and N-—— = 0, the system gives explicitly the correcton for p:
Cp= f-N:h
3u

we shall prove that the correction for 6 can be found gxplicitly also. First let's prove that

Cé 15 a deviatoric tensor.

. . . l .
From the second equation of the systern and using the expression of % one obtains
o

U'(Ca.) =—trh

Using the definitions of h and Cg,

A




o[(8)s41] = BA +2p)mre = r[(5)g] = constant

These relations being true for any iteration (s), then r(Cg) = 0 and the proof is achieved.
oN .
Using this last result together with the expressions of 3 and Cp yields for the

second equation of the system:

2
A:Cz= —h—?(f——N:h)N

)
where  A=|1+2Ap H-2EApN®N
O'eq O'eq

One can also check the following result: the tensor A is invertable if, and only if,

Geq # 0, and in this case:

Al= 31;1 [n+_2“ ApN@N]
1+ —Ap ch
Seq

Using this expression gives explicitly the correction{for G

3 1+.—Ap ch
Geq

To summarize, this method is a fully implicit scheme with the advantage of an explicit

scheme: no linear system to be solved and the unknown are updated explictly.

Once p and & are found, €P and D are calculated from their discretized constitutive
equations and the stress components are given by G;; = (1-D)gj;.

Let us remark that the method described above can be applied to the case of nonlinear
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isotropic and kinemaac hardenings, with or without damage.

4.4.2. Jump in Cvcles Procedure

For periodic loadings of fatigue with large number of cycles, the computation step by
step in tme becomes prohibitive and the complete computation is out of a reasonable
occupation of any computer. For that reason, a simplified method has been proposed
[Billardon, 1989] and a slightly different version is used in this work. It allows one to
"jump" large numbers of cycles for a given approximation to the final solution.

(a) Before any damage growth (i.e., when p <pp)

(1)  the calculation is performed until a stabilized cycle Ny is reached. Let 8p be the

increment of p over this cycle. We assume that during a number AN of cycles, p remains

linear versus N with the slope S—z— This number AN is given by

AN =

5|

where Ap Is a given value which determines the accuracy on accumulated plastic strain.

(1) ajump AN of cycles is performed and p is updated as
p(Ng + AN) = p(Ng) + AN « 8p.
Go 1o (i)

(b) Following damage growth (i.e. when p 2 pp)
(1)  the calculation is performed with a constant value of the damage (D =0) until a
stabilized cycle Ny is reached. Then a fully coupled elasto-plastic and damage computation

is performed for the next cycle. Let dp and 8D be resp. the increments of p and D for this

cycle. We assume that during a number AN of cycles, p and D remain linear versus N
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with resp. the slopes g—z and g—s This number AN is given by
L L

AN = mind 2P 8D
dp oD

where AD is a given value which determines the accuracy on the damage.
(i) Ajump AN of cycles is performed and p and D are updated as

p(Ng+1+AN) = p(Ng+ 1)+ AN - 8p
D(Ng+1+AN)=D(Ng+1)+ AN-8D
Gotwo (1)

The choice of Ap and AD is of a first importance. For this work we chose

AD = 2ie g Ap= S_ AD, whereAg is the strain amplitude.
5 Y(Ag)

This method gives good results but as any heuristic method, sometmes it fails and

the values of AD or Zﬁ must be changed.

4.4.3. The Post Processor DAMAGE 90
A computer program called DAMAGE 90 has been written as a "friendly” code on the
basis of the method developed. The input data are the material parameters and the history
of the total strain components gjj. DAMAGE 90 gives as output the evolution of the
damage D, the accumulated plastic strain p, and the stresses Gjj up to crack initiation.

DAMAGE 90 distinguishes between two loading cases:

(@) General Loading History. In this case, the history is defined by the values of
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€j; at given "ume” values. DAMAGE 90 assumes a linear history between two consecutive
given values.

(b) Piecewise Periedic History. In this case, the loading is defined by blocks of
cycles. Ineach block, each towal swwn &;j varies linearly between two given "peak” values.
DAMAGE 90 asks the user if he wishes to perform a complete calculation, or a simplified
one using the jump in cycles procedure described in Section 4.2 if the number of cycles is
large.

DAMAGE 90 is wrinten in FORTRAN 77 as available on a CONVEX computer, and
contains near 600 FORTRAN instructions. It is designed to be used as a post processor
after a FEM code. However, it may be used in an interactive way. In all the examples of
Section 5, the average computing time on the CONVEX machine was between 1 and 13 sec
for each run.

The questions asked by DAMAGE 90 for a case corresponding to an example of
section 5.4 are listed in Appendix 1 together with the results. Appendix 2 1s the complete

Fortran listing of the program DAMAGE 90.

4.5. Examples
The following exampies were performed with the "DAMAGE 90" code in order to
point out the main properties of the constitutive equations used together with the locally

coupled method.

4.5.1. Case of Ductile Damage

The material data are those of a stainless steel
E =200,000 MPa, v=03

of =200 MPa, Oy =300MPa, o * 500 MPa
S =006MPa, epp=10%, Djc=099
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e tensi mjcr I
The pure tension case at micro-scale is obtained by giving pp = €pp = 10%,

D. =D =0.99 and €| as the main input. DAMAGE 90 computes the other strains

O

1 1
En=E833=-3¢& +(—— V)m

2

which represents the elasto-plastic contraction resulting in the incompressible plastic flow
i P P __ 2P
h}’pOthCSlS (822 = 833 = - Ell)
For a better representadon of the large strain hardening of that material, the piecewise

perfect plastcity procedure is used with the following data:

E”% 0 0.25 1.5 5
cgMPa | 200 ! 300 | 400 1 500

The results are those of Figure 9 where the strain softening and the damage are linear

functions of the strain as it is inroduced in the constitutive equations

Fig. 9. Elastoplasticity and ductile damage in pure tension at microscale.
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Those cases of two dimensional loadings were performed in pure perfect plasticity
with a plasticity threshold 64 = oy = 500 MPa.
The influence of the triaxiality (ratio Gy/Ceq) upon the accumuiiiea plastic strain to
rupture pg was obtained by calculations for which in each of them O/Geq is fixed to a

. I . G E ¢ .
certain value. As from the constitutive equations, —b- = —H this fixes the value of
Cyq 1-2Vv o

€11 + €22 = 3ey. Then, for each point €] was chosen and €77 taken as €37 = 3€p - €11.

The points of the limit curve in strains corresponding also to rupture were obained

with proportional loading in strain histories: € =o€y, €33=0
_R-P
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Fig. 10. Effect of the triaxiality
upon the strain to rupture.

€PR is the strain to rupture in

pure tension G = 1/3,

ePR = 19.6%

H/%eq

2la

Fig. 11. Crack initiation limit
curve in plane ctrainc

the results are plotted in Figures 10 and 11 where are obtained the classical strong effect of the

triaxiality which makes the rupture more and more britile (PR - PD) — 0 [McClintock, 1968]
and the classical “S” shape of the limit curve of metal forming [Cordebois, 1983] here in plane

strains.
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4.5.2 Case of Britle Damage

The material data are those of a ceramic

.~y -

E = 400,000 MPa v=0.2

of=200MPa,  ©y=250MPa, Oy =300 MPa
s =0.00012 MPa, epp =0, Djc = 0.05

An elastic tension case is considered at meso-scale, €] is the main input and the two
other principal strain components are imposed as €7 = €33 =-V €13.

At microscale this induces a pure tension in the elastic range but a three-dimensional
state of stress occurs as soon as the plastic threshold is reached due to the difference of the
elasto-plastdc contraction of the inclusion and the elastic contraction imposed by the matrix.

The plastc threshold is taken as g = 200 MPa.

The result are those of Figure 12 for the behavior at mesoscale where no appreciable

plastic strain appears and of Figure 13 at microscale where the effect of damage is sensitive.

4.5.3. Low and High Cycle Fatigue

In the damage model, there is no difference in the equation between low and high
cycle fatigue, which obey, this is the hypothesis, to the same energetic mechanisms.

Furthermore, written as a damage rate equation it is valid even when a cycle cannot be
defined.

The matenal data are those of an aluminum alloy

E =72,000 MPa, v=032
of =303 MPa, oy =306MPa, o, =500 MPa
s =6 MPa, epp = 10%, Djc=0.99
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Fig. 12. Stress strain and brittle Fig. 13. Stress-strain and damage
damage at mesoscale in pure at microscale when pure tension
tension is applied at mesoscale

As for the example of Section 5.1, pure tension cases at microscale are considered by
giving as input data €] 1, the other strains being computed by DAMAGE 90.

In order to take into account the cyclic strain hardening the following plastic
thresholds taken from a cyclic stress strain curve are considered for the different constant

strain amplitudes imposed

€11% +0425  +043 +0.47 +1 +35 +45
og MPa 303 305 308 370 440 460

The number of cycles to rupture obtained are given as a function of the strain amplitude

imposed in Figure 14 on which the number of cycles to damage initiation N (p = ppy) is also

reported. As shown by experiments, the ratio N /N, increases as Np increases.
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Fig. 14. Fatigue rupture curve in pure tension at microscale.

The details of the results corresponding to the case Agy] = 7% are given in the graphs
of Figure 15 where are reported the evolution of the strain €17 and the stress-strain loops
(011.€11) as a function of the number of cycles, the equivalent stress Ceq and the
accumulated plastic strain p together with the damage D.
p It is interesting to compare with the case of a pure elastic tension case at mesoscale
| inducing a three-dimensional state of stress at microscale. The same input are used as for

the case of Figure 12 except that the strains applied are
€11 =+ 3.5%, €27=£€33=-VE[].

The four similar graphs are shown in Figure 16.
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Fig. 15 . Results of a very low cycle fatigue in pure tension at microscale Agyq = 7%, Ngr

=40 cycles.
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Fig. 16. Results of a very low cycle fatigue in pure tension at mesoscale inducing three-

dimensional fatigue at microscale Asj ] = 7%, Ng = 8
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4.5.4. Nonlinear Accumulation in Fatigue

An important feature of fatigue damage is the nonlinearity of the accumulation of
damages due to loadings of different amplitudes. If a two level loading history is
considered wiui Ny cycles at the strain amplitude Agj and N7 cycles at the strain amplitude
Agy with Ny + Np = Ng the number of cycles to rupture, in opposition with the

Palmgreen-Miner rule, generally

N, N,
+
NRl(AEl) NRZ(AEZ)

<1 if Ag; > Ag,y

N N
Ng,(Ag))  Ng,(Aey)

>1if Ag; < Agy

NR] and NR2 being the number of cycles to failure corresponding to the constant
mplitude cases of fatigue respectively at Ag; and Ags.
This effect was studied with the same material data as those of the example 5.3 on a

one-dimensional case at mesoscale €77 = €33 =- VEq).

€11 = £ 0.47% for the highestlevel Ng =7720 cycles
€11 =+ 0.425% for the lowest level Ng = 109570 cycles

The results are given in the accumulation diagram of Figure 17, they are in good
qualitative agreement with experimental results
4.5.5. Multiaxial Fatiguc

Two cases of multiaxial fatigue were studied: biaxial fatigue and fatigue in tension
and shear. Both were performed with the material data of examples 5.3 and 5.4. The
game played with the code, DAMAGE 90 consisted of finding the state of strains which
produces a given number of cycles to failure. This was done by repeated trial from many

calculations.
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Fig. 17. Accumulation diagram for two level tests in tension at mesoscale.
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A plane state of strain is considered with the following in phase strains
E]ll=xx €=xy €33=0
Figure 18 shows contours of cycles to failure corresponding to Ng = 7800 cycles.

s

Na: 7800, cles

Fig. 18. Biaxial fatigue in plane strain.
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This is the same type of calculation with
€11=*x ¢€12=+y all other components =0

Figure 19 summarizes the results for the same number of cycles to failure.
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Fig.19 Fatgue in tension and shear strains imposed.
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4.6. Listing of DAMAGE 90

e 0Rt0s00000000000000000retiteveotineerrtacectsaccrssssccatinniscre

€*** DANUGE 90

[ 4 Elastic-perfectly plastic lav coupled to a ductile damage model.
€*1° Pully implicit integration scheas.

C*2* hmp in cycles procedure.

C*** Written by lasam Doghri

C*** Version : May 199
C o0 7000000000000000000eersose00asanetestsrsscssesrasasttcncarenencony
DPLICT REAL*S (ME,0-2)
CRARACTEIR*1 UNIAXI ,ANS?D, ANSDC, CYCLIC, TP, CONVER, STAR, COUPL
CHARACTER*20 PILZL, FILE2 .-
CHARACTER*$ COMMENT
PARAMETER (NTENS=§ ,RSTATVel]l)
REAL*S STRS(NTINS) ,STASTV(NSTAIV) ,STATEVI (RSTATV),
« STRAN(NTINS),DSTRAN(NTERS),SIGRI(6),SICGHT(6),
. INCUSE(S0),TTM(200),RXST(6,200),LPsB(6,50),LPSS(6,50),
. PEROIV(6),SYTEL(50)
INTIGER ISIOPE{6),IPER{6),INDEX(6) ,NBCYCL(50)
COMON/ETIQL/ES, XNU, SIGS, SMPD, SO
CMTN/ETIQ2/ONE, TWO , THREE
DAZA INDEX ~11,22,33,12,13,23/
C*** REIAD DATA

STO=1.D+10

DRIT=2.9920

WRITT(®S,*)"

WRITE{MS, %) ¢

WAITL{MS,®) ¢ ®eeceserterttatectastctrocncessaiccrsernrrsannstnsans
.

NRITE(MS,*)” Give material ccastaats and the strains history”’
SRITL(NMS, %)

WRITE(MS,*)* - Ser DAMASTIO0 e

WRITE(NS, %) .
WRITT(®S,?)’ will give you the lanage growth up to crack fnitiatio

WRITT(MS, %)’ ®reccrrvesrvesetccvrerrtasnsscacen

'
WRITE(MS5,*}
WRITE(MS,®)’* ERASTICTTY . Give @

WRITT(MS,®*}’ YCLNG s modulus
READ (™S, *) L2
WRITE(M5,%) POISSCH’ s ratio :*

RIAD(MI, ¢ )V
WPITE(MS,*) " ** PERFICTT PLASTICITY : plastic threahold SIGs
. given with loading . Give :’

WRITE(M5,%)’ Fatigue limit Sicf  :*
RLAD(MB, *)SIGT .
WRITE(MS,*)’ Yield stress SIGy z’,
RIAD{MB, *)SIGY R
WRITT(MS, %) Ultiaate stress SICu :’

READ(M3,*)51CU
WUITR(®S,®)’** DAMAGE EVOLUTICN :° D = {Y/S) ép . Give = §°*
RLAD{™B,*}S2
1 FORMAZ(A)
WRITE(MS,®)’** DAMISE THRESHOLD : @m0 £f pepD. Do you knov pO?
. 'Y or NG
READ(M3, % JANSPD
If.((NKSPD.IOA'y').OR.(t\‘lSPD.ZQ.‘!'))TH:J
WRITE(FS,®)* Give the value of pD :’
READ(MB, *)SMPD
IF(SMPD.XQ.0.)S¥p=]l . D-§
ELSE RF((ANS?D.LQ.70" ) .OR. (ANSPD . EQ. "N ) )T
WRITE(MS,1)

N Give I;D in tension :

3 pO=ERD*(SIGu-$1G?)/[SIGs—{SIGL**2/5Icy)]" .
READ{MB, *)EPD
Ir(EPD.EQ.0.)E7Dml . D-§

| 34:3 4
STOP’ **° WRCHNG DATA. GOCD BYEL.’

o 1r

WRITI(MS,%}7** CRACK INITIATION : DmOc . Do you know Dc 7 *°Y’’
. or "N

RLAD(MB, 1 IANSDC

TP{(ANSDC.EQ. 'y’ ) .OR. (ANSDC.IQ. 'Y’ ) JTHEN
WRITE(MS,*)’ Give the value of Dc (tenesber : 0 ¢ Dc ¢1) :°*
READ(MB, *)DRIT

ELSEIP{ (ANSDC .Z3.°'n" ) .OR. (ANSDC.EQ. *N* ) )THEN
WRITE(MS,*)* Give Dlc {n tension :
.- Do o= Dlc * [{S1Gu/SIGa)**2] / Rv *
READ(MB, *)D1C

[ <24

STOP***" WRCNG DATA. GOOD BYT.’
o Ir
WMRITE()XS, *) *** INTTIAL CONDITIONS . Give :°*
WRITE(RS, ) The value of po  :*
ROAD{(MB, ¢ ) SMPO
WRITZ(rS, %)’ The value of Do :*
READ(MB, )00
WRITZ()S,*)"** LOADING*
WMRITE(MS,*)"* Is the stress states cniaxisl ? *°Y'’ or *'N’'’"
READ(MB, L JUNTAXT

IP{UNIAXI.RE, Yy * AKD.UNIAXI.XE. *n’ AND.
. ONIAXI.NE. Y’ . AND.UNIAXI.XE. “3‘ }STOP* *** WRCRG DATA.
. GOOD BYE.
IP((UNIAXI.EQ. 'Y’} .OR. (UNIAXT.IQ. X'} ) EAXIal
WRITE(MS,*) Is the strain kistory cyclic? 7/Y’’ or ''N’'‘‘

| READ(MB,1)CYCIC

IP(CYCIC.NE. 'Y’ AND. CYCIC. BT, 'R’ AT,

. CYCIIC.NE. 'Y’ JAND.CYCIIC. NE.*N" )STOP' ** ¢ WRCNG DATA.
. GOCD BYE.®
IP{(CYCIIC.EQ. ‘Y’ ) .OR. (CICLIC.2Q. *Y* ) ) THES

WRITZ(»S,®)’ *

WRITE{MS,®)’**""* YOUR LOACIK IS CICi>C.°*

WRITE(MS, ) ¢

MRITE(MS,*)’ Do you wish the Ji=p {n cycles procedurs for
. large M 2?2 *°Y’¢ or *’N'""

ROAD(MB, 1) 02

IP(TOMP.NE. 'y’ ND.JP.NE. ‘B’ AND.

. JOPLNTL T ATDLIUMPLNEL 'Y )STTP " WRONG DRATA.L

Give the nu=ber of cycles for block :',I2L

READ (3, * )NBCYCL{IBL)

BCYC EaNCYTE+NBCICL{IRL)

PO ISTel,XAXI T
WRITE(™S,®}’ Give for sach 3%
WRITE(MS,3)INTEX(2ISTY
PORMAZ (¢ 13t peak , 2nd peak ©f ’,12, °-strain’)

READ(MB, *}EPSB(IST,IBL) ,EPSS(IST,IBL)
| vl es]
WRITE(MS,®)* " Give the valus of the plastic threshold stress
& SIGs for this block :*
READ(MS8, *)STIEL(IBL)
WRITE(rMS,®) Suggest & ci=ber ’ increments per cycls
. fminizus : &) : ¢

READ{MD, * ) INCUSL(1IBL)
£ Do
ELSC IP{{CYCLIC.EQ.*n’) . OR. (CICLIC.EQ. *N” } 1then
WRITE(®S,*)” *

WRITE(MS,%) ***** FOUR LCADLCK IS BCT CYCLIC.®
WRITE(»S,*)” °* .
WRITE(FS,®}" Give the muber of points which define the histor
sy (200 max) :° .
READ(MB, *)NGIV
WRITE(MS,*)* Give the values of tize at thesa points @’
READ(PS, *} (TD4(IG),IG=1 BGIV)
PO IST=1,NAXI
WRITE{™S,2)INCEX{IST)
FORMAT(* Give the values of *,I2," —atrain at these’
.’ times :')
READ(M3, *J (KIST(IST,IG),IC=1,RGIV,
o e
WRITLZ(™S,*)* Give the valiues of the plastic threshold stress
LIGs at trhese tines :’
BEAD(PD, *) (SYIEL(1G),XGal,NGI7)
WRITL(™S,*)’ Suggest an initial tive increment ¢ to
aintervalle Detween first 2 poi=ts’
READ(M3, *)DTIME
©w 1r

i1 cozponent MAX and :in values :’

[

C***INTTIALIZE. STATTV= r,p,D,dD,{pstra],.&p

DO ISTe1,RSTATV .
STATT/I(IST)=0.
D o -
STATEVI {2} =S50
STATEVI(3)=D0
STATCVI(4)=0.
0 IsT™=1,6 -
STRAN(2ST)=0.
DSTPAN{IST)=0.
oo po
IF({ANSPD.IQ.’y* ) .OR. {ARSPD.IQ. Y * ) JEPD=SMPD




v J—
OeRG: ={SIGU-SIGP) *EPD TP (STATEV(3) .GE . DCATT ) THEY
D=3 . MAITE(MS %)’
= = AP MRITE(MS,®)’*"* CRACX INITIATICN.®
TOLINEI=2.5D-2 GO TO 308
TLOG K=} OO I
ey’ IP(STATIV(3).GE.1.1)STOP’ *** DAMAGE CAMROT DXCTED 1.
TPASS=) C*** FIND pd
onEsl . D00 IP (ILOOKD . 2Q.-0 . AND. STATZV(11) .GT.0. ) THEY
THO=2. D00 EURG 3w EXERG 2
TURIL=3.D+00 IP( (ARSPD.-DQ. 'R’ .QR.ANSPD.EQ. ‘N’ )
BAC2aCSGRT (TWO ) Lot . AND, EXERG] . GE . LYERG] ) THEN
suUlell SMPO=STATEV(2)
WOUZs12 IILOOKG»1
Firis’dizect.out’ ELST IP({ARSPD.IQ.'y’).OR. (ARSPD.EQ. Y’ }.ARD.
FI1r =‘shear.out’ . STATEV(2) .GE. SPD) THEN
OPLY(CNTIT=NUL ,namesFILE] ,statuss‘unkzown’ ) . ILOCKO=1
CPLY(CYTT=NU2 ,nane=YILE2, statuss'unknown’) . o Ir
oMy’ TINE® . P 1r
IP{(CTCIC.EQ. "y’ ) .OR. (CYCLIC.EQ. *Y* ) ) COIMET=" CYCE’ . IF (DABS {TDME-TTM(IGI7+1) ) . LE . DTSN ) THEY
WRITZ(SV1, 312) CRrOaNT ) IGIV=IGIV+L
WRITT(YUZ,312) COMMENT oo Ir
WRITT(90,315) COMMENT oo Iy
312 PCRWAT(IX,AS, 21X, "STRAINS’, 27X, "STRESSES’ 16X, CAMASET, : DIDEADTIME]. 1
. 9X,'p’.8X, *WISES’,IX, CAY.EQ.STRESS’) TP {TDE+DTME . GT. TR IGTV+1 4D EN . AND . IGIV+1 . 18 NG TV ) TH
WRITT(L, I3} DTIME=TTM(IGIVHL )T
WRITE (2, 314) o I
313 FCPMAT(19X,°11°,9X,°22°,9%,°33°,10X,411°,9X,'22°,9%,"33", . SP(IPASS.EQ.13.CR.DTIME.ID. DIMIN)THEN
. 11X,’D’,23X,°*SIG eq’,5X,'SIG*’) : WRITE(MS,®)’*°* B0 CONVERGENCE®
314 PFORMAT(19X,°12°,9%,°13°,9%,°23°,10x,°12°,9%, 1)y ,9x,°23", WRITL(MS,®) ‘DTIME=* ,DTIME, *IPASS=" ,IPASS
. ux,'n-.nx,'s:c oq'.Sx,’s:G") Go TO 303
315 PCR¥AS(SX,AS,10X, "CAMAGE’,SX, *p’,5X, *MISES LQ.STRESS® o Ir
. L2, "CAMAGE IQ.STRESS) . Do
C™** I IET LCADLTG 1S ROT CrCLic o T
TP ((CTCIC.IQ. '’ ) .00, (CICLIC.EQ. *8* ) ) THEN Ce*** IP THE LCADIWG IS CTQLIC
JuPernt IP{(CTTIC.TN. "y ) .OR. (CYTIC.EQ. *Y* ) }THEN
TOE=TIM(L) TPER=L.
PoCadTIME /10000, i DIQ=TFER/40000. R
TrIWTIM(NGIVY) “TOE=D.
1CT7=1 1CTCLEaL
CALL CUTPUT (UL, U2, TIME, STRAN, STRS, STATTY, NTINS , K5TATY, RRCIC~1CICLE
. $TRS3,STAR) DHTIMEsO.
DCWMILE(TINESDTINME . LL. TPIN) o I=1,6
O IST=1,RAXI - SIGT(T)=0.
DSTRAN(IST)=DTTVE* (KSST(IST, IGIV41)-BIST(IST,1aIV)) Ll
€ JITIM{IGTV+1)-TI(IGIV)) SMPI=SMPO
£ o pEI=D0
CINVER= 'y IF((NP.EQ. *y’ ) .OR. (TP .£Q. 1" ) JTHEN
0O IST=l, NSTATV COUPL=’n"*
STATTV(IST)mSTATTVI(IST) OFELY (UNIT=30,name=’fatigue.out’,statuss’uninown’)
o o WATTT(80,%) 'REAL TDE : D P
£34 WB.(IGW) WRITE(80,) o0 0sssccccnssstrescsocncsscres,
IF{5:C5.LT.SIGF.OR.SIGS.GT.SIGU)STOP *** n.;;s: REVIEA THE WRITT(80,%) BEGINNING OF THE CY/CIE’
3 VALUTS OF SIGZ SiGu and SIGs .° WAITE(8Q,*) 'CYQIE (REAL) ~’ NRCYCL
COALL DITEGR{STRAN, DSTRAN, NTINS , RSTATV, UNIAXT , CoU2L, WRITE(80,%) CYCIY (FMACQINE] =’ ,ICYQE
' . CONVIR, STRS,STAILV,STRSB,STAR, u) WAITE( 80,400 )RTIDME, TIME, DI , SMPL
cree xr SO CONVERGENCE, DIVIDE 'TIME INC. BY 2 £ Ir ) y
I7(CONVER.EQ. 'y’ JAMND.STATEV(11).GT.0. ) THEN CALL OUTPUT (NU1,RU2,TIME,STRAN, STRS, STATEY, NTINS, NSTATY,
ENEAG 2= ENERG )+ {SIGS-SIGP® (SIGF/SIGY) ) *STATTV(11) « STRSB,STAR)
IP(AMSOC.ZQ. *n’ )DCATT=DIC® { {SIGU/SIGS) * *2) /R 3BLal
17 (ILOOKO.EQ.0 . AND. [ANSPD.EQ. 'y’ .OR.NNSPD.EQ. Y’ ) DITDE~TPER/INCUSE{ IBL)
. AND.STATEV(2).GT.1.05"SMPD . OR. 0O IST=1,6
. I1OOKO . £Q.0.AND. (ASSPD.EQ. "o’ .OR.ANSPD.EQ. *N" ) .AND. IF(EPSB(IST,IBL) *EPSS{IST,IBL).LT.0.)THE .
. ENERG2.GT.1.05°E3ERG].OR. : . PERDIV(IST)=TPER/A.
. STATEV(3).CT.1.05*DCT)THEY st
CONVER= "R’ . PLADT?(IST)=TPER/2.
©o 1r : | bl 4 4
T e . IPER(IST)=1
IF{CONVER.IQ. ‘D’ JTH ISLOPE(IST =1
IPASS=IPASS+1 D o
DTIME=DTIME/2. ’ ' PCYSUM=0
C*** IT CTNVIRGINCE DCOWHILE (NRCYCL. LE .NCYCLE)
st . : PO IST=1,NAX
IP({ANSDC.EQ. *n’ .OR.ANSDC.EQ."N") I (TIME+DTMIN.LE. PERDIV(IST ) ) THEN
- JNTD.DCRIT.GT.0.9900)DCRI ™D . 99:;0 . ns‘mmus-r)-trsu(xr 18L) *CTIME/PERDIV{IST)
IPASS=0 _ rLSE
DO IST=1,NSTAZV xu= epsb{ist, 1b1)—opss(ist ib1)
STATTVI(IST)=STATEV(1ST) DSTRAN{IST)=ISLOPL{IST) *XXnu®1. *DTIME/TPER
oo bo . . oo Ir
DO IST™1,6 ; ' £ Do
STRAN{IST)=STRAN(IST)}+DSTAMN(1ST) . ’ CONVER="y *
oo o TO ISTw],NSTATV .
TIMETIME s DTIME . STATEV(IST)=STATIVI(IST) )
CALL OUTPUT (NUL ,NU2,TLIY, STRAN, STRS , STATIV, NTESS , HSTATY, oW Do

- STRSS,STAR) - SIGSaSTYIEL(IBL)
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F=SIGS/1000.
EPRTI=S51GS,20,/10000.
Ir(SIGS.LY.SIGr.aN.SIGS.CT.SIGU)STOP  *** PLLASL REVIIW THL
[3 VALTIS OF SIGEf SItu and 3IGs .’
QUL ITICR( STRAN, DSTRAS, FTINS , RSTATV, UNIAXI, CCUPL,
CONVER , STRS, STATEV, STRSB, STAR, RV
c"*rrnm DIVIDE TIMNE INC. BY 2
IF((ANSDC.EZRQ. D’ .CRAKSDC.EQ. "N’ ) AND.
. STATEV(11).GT.0.)
. DXRIT=DIC*( (SIGU/IIGS) **2) /RNU
IP (CHVER.ZQ. B * JTHEX L
IZASSaIPASS+1
DIIME=DTDE/2.
IF COEVEGINCE
st
¥ ((ANSDC.ZQ. “n’ .ORAXSDC. Q. °8’)
. ~AND.DCRIT.GT.0.9900 ) DCRIT0.99D0
IPASS=0
IO ISTw] NSTAZY
STATIVI({IST)=STATIV(IST)
<O Do
DO ISTe1,6
STRAN(IST)=STRAN{IST)+DSTRAN(IST)
£ o
TIMEATIMELDTING
RO EaTIMELTHTDE
QUL QUTPUTINUL, RUZ,RIIME, STRAN, STRS, STATTY, NTINS , NSTATY
. STPLY,STAR) :
IT{STATEV(]) .GE.DCRIT) TN
WRITE(MS, )’ ¢
WRCTE(MS,*) ' *"* CRACK INTTIATICON.®
GO TO 308
ED Ir
IP(STASTV(3).GE.1.1)STOP’ *** DAMAGE CANNOT LXCETD 1.°
0 IsT=1,6
IF(2ASS{TIME-IPIR(IST) *PLRDIV(IST)) .LE . UDONI IO
IPCR(ISTI=IPLR(IST)+1 .
DTIDME=L. /IKCUSE(IBL)
| 2= 4 4
IP(ISISFE(2ST).GT.0.AND. BASS (STRAN(IST)~EPSB(IST,I8%)) . LS.
. EPEMTN.CR.ISLOPL(IST).LT.0.AND. DABS (STRAN(IST)-EPSS(IST,I2L))
. WLE EPSMON)THEN
ISLOPE(IST)=—ISLOPE(IST) -

Ceee

2538 24
0 o
C*e* EDCr A CI1QLE
IP(CAAS (TDE-TPR*IQCE) . L. o e
IDELTN=0
o f=1,6
SIGHF (I)wSTRS(I)
oo Do
SMPPaSTATTY(2)
DHY wSTATEV(3)
DELTP=SMPP -5
CELTDmTHY -IHI
Co** P gD .
IP{ILOCKD.EQ.0)TEN
ENERG 3= ETZRGO+ (S IGS-SIGP * (SIGY/SIGY) )
. DELTP® (KRCTCI-NCYSUM)
- IP((ANSPD.EQ. R’ .OR.ANSPD.EQ. *K* )
. JAND . ENERG) .GE . ENERG) ) THEY
SR DY
RC{CO=RLICL-NCTSUN
TIOCKO=1
ELST IP({ANS?D.TQ.'y’ .CA.ANS?D.EQ. "Y' ). AD.
. STATEV(2).GE.SMPD)THEY
NC(CLOmNRCTCL-NCY SUM
ILOOKO=1
oo 1P
| ~S {4
Ceor 1P 1M CICLES PROCIIURS
IF((JUMP.EQ. Y’ ) .OR. (JUMP.EQ.°Y" ) ) THE
WAITE(30,%)'EM OF THE CYCLE’
WIITT(30,400)RTDE,TIVE [ OHP, S22 T
DOMAXOwDCRIT/S0 . -
IZ({ANSDC.EQ.°n% ) .OR. {AISDC.EQ. *H*))
. DEMAXO=DLIC/30 .
IP{ (UNTAXT . IQ. *y* ) .OR. (UNIAXX . m T )e
YYYuS1GS*$1GS,/2. /L0 -
se :
TROEPS=0 .
PO IsTw1,)
TROCZS~TADLPS+LPSB(IST, IBL)-TPSS(IST,I8L)
oo o
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YTim(1.+XXU) *SIGS*SIGS/Y. /X0
TY2u£0 *TROLPS “TRCLPS/(1.-2. *CNI) /6.
YTT=TT1+YT2
|~ e 4
CPMAXO=50 * DOMAXD/TYY
DPMAZAOPMAXO
PSLOPL=NBCYCZ.(TRL "
I (DPIAX.GT . PSLOPL | DPMAL=PSLOPE
YARITX(A0, *} * ITO0KO="* , ILOCKD , * BCY 0w ,RCYCLO, *§Om’ , SHPD
IP({CCUPL.IQ- 'n’ .CR.STATEV(2) .LT. SMPD ) THEY
STADw‘y’
PO IX=1,6 -
XF (DABS ( SIGHF (KX)-SIGHI (XX) ) .GT.EH1 )5TAB='0*
= o
WRITZ(80,°) ENERGlw’ ,DXERGL, * ENERG 3m’ , TERG]Y
" IF(STAB.EIQ.'y’) DNXY
MRITE{80,%) STABIZIZID C¥r’
IF (STATEV(2) .1T. 0D THES
C*** JUMP OF CICLLS RITORE DNOGE GROWDN
IDELTN= IVTYT { DPMAX,/DELT7
IF (MRCYCAIDELTN.GT . BCISTMAEBCYCL ( TAL) )

. IDELT#=iCY SUMHBCTCL { TBL ) -NRCY C.

26 2= EXERGO+ ( SIGS-SIGT ) *EETP [ RRCTCA TDEL TN 80Ts-~
IF (EVERG2.GT.ENERGL®1.0S)

. IDELTN= ( EIRG 1-EERG Y ) /{ SIGS-SIGY ) /TELTP
WRITZ(80,%}*** NP OF *,IDCSN,* CICLrs”
SRITT(80, %) DPYAX=’  IDESCEITP, ‘YYYe',TYY

st
WRITT(80,*) COUPLED CTMPUTASION POR REXT CTCLE ¢
COUPLa 'y’
<D 17
o 1r
st
€°°* JUNP OF CYCIIS AFTER DAMAGE Gowng
DOIMAX=DOMAXO
DSLOPE=(NBCTCL(IBL)-ACTCLO ) *LELTD
X¥ (DDMAX.GT . DSICPE ) LOPMAX TS LOPE
PICLI=0
ITELIN=IDITT (COMAX/DELTD)
17 (SRCICAIDELIN. G FOYSUM NBCTCL ( TBL) )
+ ICELThmSCTSTMHMBCYCL ( IBL ) -RRCTC.
I (K +DEXTD IDELTN.GT . DCRIT®1.05 ]

» JCELI[DINT{ (DCRAIT-IRP ) /TLXID)

“I7 (ITELTY.GT. IDINT{ CRAX/REISP) ) IDELTNe IDINT ( DRV, TEES7 )

WAITE(80,%) """ JIM® OF ’,ITELTY,’ CYCIES’
WRITE(30,%) " DOMAX=’  ITEZINCDLLID, CDPMAXa’ , ITLITIICLT?
COUPL=‘n"
o 1r

17 (CELTP.GT.DPMAX)WRITL(80,%) " *** PROBLENM :
. DFMAXD IS TOO SMALL.®
IF (DCITD.GT.DOMAX JWRITE(80, ) * *** PROBLEY :
+ DOMAXD IS TOO SMALL.®
17 (DELID.GT.DOMAX .OR . DELT?P .GT - DPMAX ) ITDELTN=0
17 (IDEIZN.IX.0.}STOP *** FRCRIEM : WEGATIVE JUMP CP CYCTES.
o 17
o Je1,6 -
STGAT (I )=SIGEY (I)
= Do
SMPI=SMPP4DEITP* ICELDY
DE=CMP + DEZID*ISLLTN
STATEVI(2)mSMPI
STATEVI(3)=DEX .
DETIMCnDRTIME « TPER® IDELTY
ERCTCLaNRCYCIAITELTN
RIIMTTIME + DHTTME
IF{{TUMP.EQ. *y*) .OR. (NP .1Q. 'T* ))'x:x
WAITE(30,°)°
SRITE(80,*) *BEGIRNING OF THY CYCLE®
WRITE(20,%) *CYCLE (RTAL) =* RRCYCLA1
WRITE(80,*) 'CYCLE (MAOONE) =',ICYCIE+]
WRITE (80,400 )RTIME, TIME, DT, SMPT
ro 1w
I? (XRCTCL.. EQ - NCISUMENBCYCL( IBL) ) THEN
EILRGO=EXERGO+ { SIGS-SIGF * (SIGP/SIGY) ) *DELTP* {KRCIC-¥CYSIM)
BT SUMWNCTSUMHIBCLCL{ IBL)
IRL-TBL4L
D 17
ICICLL-TCYCLE ]
BRCY L MRCY s 1
B Ir
FORMAT{1X,4(L12.6,7,°))
oo »r
PO IsTwl,6
IF (TDESDTIME . 6T . IPER{ IST) * PEADIV( IST) 40TV ) TALY

400




DTIMZa(IPER(IST) *PERDIV(IST) )-TDNE
oo r
= o
IZ(IPASS.EQ.13.0R. DTDE. LS. QN ) THIY
WRITE(MS,®) *** BO CONVERGENCT®
WRITE({MS,®) *CIT™Ee’ ,DTDME, *IPASSw’ , TPASS
o 1O 308 «
o
oo o
o Iy
303 WRITL(XS,*)’*°* TET JOB IS EVDED. YOUR RESULSS FI=Ys ARE :*
WMRITZ(MS,®)’ ¢ N
X {SOP.0Q. 'R’ ) .CR. {TUMP.IQ.- *N* ) DRITE(NS, * | P2=21, pT2r2
IF ((JOP. Q. "y ) .CR. (NP.2Q. *X*))
« MRITZ(MS,®)PIIE1,PILY%2, fatiGue.out’
stor
o
[add Al AL I L A Al T I Y L T Y Y Y R I
SUBROUTTX INTEGR(STRAN, DSTRAN, NTEXS , BSTATV, INTAXT , COUPL,
s CTNVER, STRS, STATIV, STRSB, STAR, L)
Coesesvctntcresrecncsecssrecessesnnsncanansaasscssnsssnes
DELICT REAL*S (A-B,0-2) '
REAZ®S STATEV{NSTATY) , STRAN{NTINS ) , DSTRAN(NTTRS | ,
& STPN(6),TD(6,6) ,AS(6),
& STRS{6),LSTRS(6),ESTRSO(6),CTSTRS(6), KESTRS(S),
& E(6),PSTRY{6),DPSTRN(6)
RZALSE LATA, N
LOGICAL CRITIRE -
CRARATTIR®1 CONVER, CIUPL, UNIAXT
TN/ /ETINN/ED, TN, $155, OPD, SO
CoPTN/TTIQL/TNE , TH0 , THRET

E=TMRETTWO
BN 2w DSTRT (TWO )
TCLALSASICS*1 . D-§
WISSaNTEXS
C*°* IDOCHTIY MTRIX
DO Iel,9155-1
DO J=lel,NISs
ID(X,J)=d.
1S5({J,I)=C.
o oDo
ID({%,X}=CNE - -
XD 0
ID{¥ISS NISS)=CNE
C*** 1LENTTTT VEICTCR
DO lel,NISS
Ir{I.LZ.Y}AS{Z})=CNY
IF(I.GL.A)AS(I)=0.
EYD 0
C**r T Ccoor.
D=3/ (CRES T} /TR0
INTASLD *TMU/(CNE-TWO* XU} / (CNE+ D)

IHCRRSTATIT{L)
DPeSTATE?(2)
DmSTAZTV()Y)
DO I=1,NISS
PSTN(I)mSTATE7 (244}
romw
C*°* TUTAL STRAIN
DO 1wl NIs5S
STR¥(INeSTRAN(I}+OSTRANIT)
IF(I.GE.&)}STRN{I)=STPN(I) *RAZ2
j bl o)
C*** ZASTIC PREDICTCR
e LN
XT((LM‘BQ.'y').oR.(LT‘:.;\xZ.DQ.'Y'})m
STRN(2) =X STRI(1)-{0. $-XTW} *PSTRN (1}
STRY(3)=5TRMN(2)
o 1r
C....Ttacs of stzain tensoc
TRAL2SaSTRY{1}eSTRI(2)«STRN{) )
C....Z2%ective stress
PO I=1,m1SS - °
ISTI\S(X)-W:b\".'u?.'a'hs(X)‘:.'M‘(STLW(I)*?ST’.‘HX))

Do Do
€L INVAR(ESTRS ,ESTRSH,ESTRSE,NISS
SIGNe] . -

XF{LSTRS(1}.LT.0.)SIGH=1.
€°°* TTLST TN YILID CONDITION
PeCSTRSB-SICS
Ir(r.ir.o. ey
¢o TO 300

st
C*** I¥ THE ELASTIC FPRIDICTOUR DOES NOT VIRIMT THE YILLD CONDITICY
DO I=l1,XISS
W1 )=MN* (ESTRS (I)-ESTRSH*AS(X) }/LSTRSB
o o

Cv** Corrections ovec the elastic predicior
€....Correction over p
DER=] . XM
CSXP=F /DE0N
C....Correction over efZective stress
DO Iwl ,BISS
CESTRS(I)w—2.°P"3(I)/3.
o Do
C*** 100P OB THE FLASTIC CCRRECTICNS
WFOIS»0
CRITLRE=.TROE.
DO WHILE (GUTIRT)
ErOISaNrOIS+1l
DIV1=LSTRSB
WTEST=2
IP(NFOLS.DQ.1)8TEST]
C*** UPDAIZ TMI STATE
C....Upcate inc. of p
BSrPw OO-CSMP
C....Update effective stress
DO lel NISS
. ESTRS(I)=ISTRS (I )+LISTRS(Z)
o o
CALL INVAR{ESTRS,ESTRSH,ESTASSY,¥ISS)
DO 1I=1,NISS
BW(I)=RN*{ESTRS{I}-ESTRSH®AS(I))/ISTRSS
BND 0O

IP (NTEST.IQ.21)THTY
DIV2=ESTRS3
RLL=(DI72-DIV1)/TIVY
Co oLy .
C....I2 we convergs too slowly,or we diverse,
C....program will propose & smaller "tize” increment.
IT(N?POIS.IQ.50.CR.
3 (NTEST.EQ. 2. AND.LREL.GE.15.D-32) )0y
CONVER="n "’
GO TO 300 -
=D 1r
C*** Coopute residual fimctions
P=ESTRSB-51GS
I7((UNTAXI.ZQ.°Y "} .CR. (UNTAXT . EQ. ¥’ } ) THEN
mﬂ(z)-—ﬂ.S'Sﬁ_’l(l)o(O.}:«‘J)'SI&‘(’SIGS/EQ

STRN(3}mST2N(2) '
TREPSaSTRN(1)*STRII(2)+5TRN(I)
o Ir
DO X1, ¥ISS
FESTRS (I )=ESTRS {1 )~LAMDATPERPS*AS (X )~
1 2.V (STPN(I)-PSTRI{I)-D2*3 (1))
IND DO .
C....Max. resicuals .
RESTRS=0 . )
DO X=1,NISS
IP(DABS (KESTAS{I)).GT.RESTAS JRESTRSADARS (KESTRS (X))
DD o

C*** ITERAIIVE TEST ON T¥E YIELD CONDITION
IF{DABS(PF}.LT.TCLRES  AND.RESTRS . LT . TOLRES ) T
CRITIRE= PALSE.
ELsSE
C*** PLASTIC CORRECTICRS
CALL VTRANVL (N, KISTRS,X0KZS,N1SS)
€....Correction over p
DX} . U
CSMP={F-XIKZS ) /T KM
C....Correction over effective stress

DENGMe DENGM * XS /ESTRSB+ (1)

DO I=1,NISS .
CISTRS(I}=(2./3.) % (KIS DETM F) *N{ I }-KISTRS (T}
CISTRS{I}=CISTRS(1)/DE0CN

| atielie o]

€*** DD OF THE ITERATIVE TEST O THL YITID CONDITICY
Do 1r
€*** D OF THE LOOP ON THL PLASTIC COARICTIONS
END DO
C*** D OF TLST ON THE YIELD CONDITION
o Ir
300 CONTINUE N
XF {CONVER 4. *y* ) THDY
IV ({UNLAXI.ZQ. 'y’ ) .OR. (UNTAXY.EQ. *2* ) )T
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DSTIAN{ 2} =STRN{ 2} -STRAN( 2)

STAZTV()),STATTY(2),STRSE,STAR
OETIAS( 3 ) wOSTRAT( 2} [}
o v o= ‘ WRIST(BYZ,130)TDE, [STRAN(I) , I=4,6), [STRS(I),Ie4,5),
C....Plastic strain incresec: & STATTVL)) ,STATT?(2),STRSB,STAR
o Is=1,N1SS WRITT(90, 444 )T STATET( 3], STATEV(2) , STRSB, STAR
DPSTRY(I)=N(X)* TSP 110 PORMAT(1X,210.4,° , *,3(E10.4,7,°),2X,3{L10.4,",°),
o . x,e10.4,° , *,E10.4,° ,°,2(E10.4,°,°; )
C....Dasage ir=resent 444 PORAT(IX,E10.4,5X,E20.4,3X,210.4,3X,E10.4,4X,220.4)
OOm3 . RCTURY
CALL DAMAGE (TRIPS,ESTRSI, Y, RNU) o

Ir(CMP.GT.0. .AXD . S+ 2P  GE . SMPD . AND.
. CCUPL.EQ. *y’ )THEN
DO=?*DSXP /SO
D Ir
STAR® (CRE-D-DD) *2SQRT(L.°L0°Y)
C....Plastic multiplier i=cresent
DSV {CNE-D-DD) * 250
C....Compute stresses
DO lel,NISS
STAS(I)=ESTRS(X)*(CxE-D-0D)
2o o
STASB=LSTRSB* {CNE-D-20)
C*** STCRE STATEV AT THT DD CF TMI INQRDICT
STATT7(1)=mSMReTR
STATTY(2) mSMPlEMD?
STATT7())=DelD
STATTV(41=CD
DO I=l NISS
STATTT{ I ) mPSTRNI (21 -2PSTRNID)
| ntelim o]
STATTV(111mlS R
Do Ir
RETURN
| ~he}

Cr®evecceccescsosnscsvcccvssncosvenonrs

C... Ist ard 2nd stress invarias
DZLTY REALS(M2,0-2)
RTAZCS W(6)
CTMCN/TTIQI/TNE, TW , T8 2

o

- WHR{V{1)a¥{2)+V(]) )
(==t o T T
DO el NTSS
IP(I.LE.3)CONSTwCINST{F{I)-TH} " (V(I)-TH)
IP(2.GC 4)CTNSTCINST (I} oV

£D 20

VBalSORT (THRIL *CONST,/T-0)
RETUAN

e

Cesvsonscnne

cesssssevectssrersrastsrnene
SUBRCUTINT DAMASL(TPITS,ZSTRSH, T,

Cesoscrtanotsesnstsssstssaccscersssosaseces
IMPLICTT REAL*S(AR,0-2)
CONTN/ETICLL, TV, $155, 590,53

TIPMZ »LSTRSBCESTRSA® (1. 4XW) /L0
TTRZ=L0 *TREPS*TREZS/(1.-2. %K) /2.
T (TTOMISTER2) /3.
ANU=2 . SEQ°Y/ESTPS2/TE 753
. RERWRT
(=)
Coessvensancnsrnsonsnsenasanscscessssses

SVARIUTINE VTR {v,7., V71 ,N085)

[ N S R TR T

C... Irner product of 2 s, =oetric 2nd order teasars

IMPLICIT REAL®S {A-1,0-1)

RIALS V(6},V1IL(6) !
<

vTned,

o 1e1.N155
VENVTVISV{Z L)
| axtelie o]
- Ry )
o
Crerosesrsonsonssssssssescrssossnsensessrsnseansascasss
SUBACUTINE OUITTUT{NUl ,RU2,TIME,STRAN, STRS,STATLY7,
- & NWIITNS ,RSTAIV,STRSY, STAR)
Cortesosenscacnosansmnsnianssnssssssesssossessccacessns
DRLIQT REALSS(M¥,0-2)
RIAL*S STRAN(NTYNS ) ,STRS {WIENS ), STATIV(NSTAYYV)

MRITT(NUL,130)TIVE, (STAAN(I) ,T=1,3) ,(STRS(1},1=1,3),
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5. APPLICATION TO THE ALPHA TWO TITANIUM
ALUMINIDE ALLOY
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The material was provide by AFOSR from the Materials Laboratory WRDC/MLLN.
Wright Patterson AFB in order to apply the micromechanics model to a practical case

interesting for applications.

5.1. Material
- Composition (Ti3 Al) Ti -24 Al- 11 Nb
Ti Al Nb Fe 0] N
bal 13.9 21.7 0.073 0.065 0.012
- Heat treatment

’ Solution 2100°F/1HR/VACUM Forced fan. Cool with argon
Aging 1400°F/1HR/VACUM forced fan air cool

- Mechanical properties.

Figure 20 gives the yield stress and the ultimate stress as a function of the tempe rature.
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Fig. 20 Yield stress and ultimate stress of the Alpha-Two. Titanium Aluminide Alloy.
Figure 21 gives theYoung Modulus also as a function of the temperature
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Fig. 21 Young Modulus of the Alpha-Two Titanium Alumide Alloy

40

5.2. Tensile specimens
The location of the tensile specimens as taken in the piece of material is indicated in

figure 22.

Omﬂw’nlu\ des  éprouvettes
e i —A1e1 de COP®
Usmplantation des bbauches es! basee sur une épaisiewr de coupe de 7 mm

Fig. 22 Localization of the tensile specimens

The drawing of specimens is incicated in figure 23.
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The drawing of specimens is indicated in figure 23 below
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5.3. Identification tests
! The 3 basic tests needed for the identification of the model are described in the following

figures.

Test n°1 is a classical tensile test strain controlled € = 107 s on specimen n° 41

Young modulus 90 000 MPa
Failure stress 523
Failure strain 1.59 %

The figure 24 shows a typical non ductile type behavior without any softening prior to failure.

Test n°2 is a strain controlled cyclic test (€ = 107571 e =+0.96 %) on specimen n° 40

Number of cycles to failure 52.

The figures 25 a, b, ¢ and d show a large cyclic hardening without any softening due to

damage.

Test n°3 is a cyclic test on specimen n° 20 (€ = 10° 51 g =+ 1.35 %) for wich the failure occurs

after a single cycle (Figure 26).

The conclusion of these tests from the point of view of damage is a typical brittle behavior for

which the damage mechanics must be applied only through the localy coupled approach as explained

in section 4 of this report.

64




The crack initiation occurs at microlevel and then propagate very tast to induce

macroscopic failure
identification of the model

Using the DAMAGE 90 post processor in an iterative process of identification the
following set of materials parameters has been obtained from the tree basic test results.
o2 5, - o

b=§—E§S—p ifp>pD::€pD i

Gs-O¢

D = D¢ — crack initiation

E =90 000 MPa
v=.3

$=3

Ep=001

of =315 MPa
oy = 320 MPa
ou = 525 MPa
D¢ =02

65




c0'0

Gi0'0

pT andyy

NIVHLS
L0'0

G000

I oN LSU.L

00¢

(4]

00y d

=

wzo_Zwwoe 20

009

008

NETWOW

h6




(8) g7 2andiy

NIVHLS

008- i

009-

7

gov-

S10°0

—4—002- \

L0'0-

S10°0-

00t

009

008

31943 15T 7 oN LSAL

=20

wzZOo0 _Zwwaoe .20

O WO

67




(q) §T 2an3iy

NIVHLS

008-

009-

00¥-

\\

\\

00¢-

GL0'0

G00°0

\\m\oxo.o-

L0

.OG

wn

-—

Q

o
1

4—00¢

00v

009

L0 T

008

¢ oN (LSUL

=0 ©

wZO0_ Zuwuuwuaoc 20

NDEFHFTWOVW

68




(3) sT 2andyy

NIVHLS

008-

009-

g,\
Z

\kOON-

GL00

10

S00°0

0 G00'0-

GL0'0-

i

00c

\

00

009

IL> IZE

008

T oN LSHU.L

=0 o

wzo0_ Zuwao .20

NHFX WY

69




(P) ST andyy

NIVHLS

008-

009-

G100

G00'0

-»002-

oov..\

t0'0-

GL0‘0-

s
e

e

00v

009

21240 )9S

008

¢ oN .LSUL

NEF-FXTWnmW

wzo0o_Z2wwe _ 29

70




97 2undiy

NIVHLS

008-

009-

o0tv-
|~

\ 002-

5100

G00°0

009

008

£ oN LSUL

wEFEFTWwnW

wWZ2ZO0_Zwwao . Z0

71




5.4. Vérification tests
In order to check the applicability of the model to the Alpha-Two Titanium Aluminide

Alloy, some stress controlled tests have been performed.

The main features of these tests are reported in the table fig. 27 and the figures 28§, 29,
30, 31, give the shapes of the stress-strain loops for different number of cycles.
Figures 32 indicates the type of brittle failure by pictures taken with an electron beam

microscope.
Those stress controlled tests have been also calculated using the Post-Processor
DAMAGE 90. The comparison between the calculated number of cycles to failure and the test

results is given in the chart of figure 33.

The agrement is within in order of magnitude of the usual discrepency.
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Fig. 32 : Micrograph pictures of fracture surface
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